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SUMMARY

The paper describes the implementation of moving-mesh and free-surface capabilities within a 3-d
�nite-volume Reynolds-averaged-Navier–Stokes solver, using surface-conforming multi-block structured
meshes. The free-surface kinematic condition can be applied in two ways: enforcing zero net mass
�ux or solving the kinematic equation by a �nite-di�erence method. The free surface is best de�ned
by intermediate control points rather than the mesh vertices. Application of the dynamic boundary
condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps
to eliminate any unnatural free-surface undulations. The implementation of time-marching methods on
moving grids are described in some detail and it is shown that a second-order scheme must be applied
in both scalar-transport and free-surface equations if �ows driven by free-surface height variations are to
be computed without signi�cant wave attenuation using a modest number of time steps. Computations
of �ve �ows of theoretical and practical interest—forced motion in a pump, linear waves in a tank,
quasi-1d �ow over a ramp, solitary wave interaction with a submerged obstacle and 3-d �ow about
a surface-penetrating cylinder—are described to illustrate the capabilities of our code and methods.
Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rapid expansion in available and a�ordable computer power and a greater awareness of
the utility of numerical simulation as a design tool has led to computational �uid dynamics
(CFD) being used to tackle increasingly complex �uid-�ow problems, and simulation of three-
dimensional, time-varying �ows is now within the range of desktop computers. In this paper
we describe the development and application of moving-mesh and free-surface capabilities
within a general-purpose �nite-volume code and illustrate it with �ow calculations undertaken
on a personal computer.

∗ Correspondence to: D. D. Apsley, Manchester Centre for Civil and Construction Engineering, UMIST, P.O. Box 88,
Manchester, M60 1QD, U.K.

† E-mail: d.apsley@umist.ac.uk

Contract=grant sponsor: EPSRC grant; contract=grant number: GR/R06717

Received 14 August 2002
Copyright ? 2003 John Wiley & Sons, Ltd. Accepted 22 January 2003



466 D. APSLEY AND W. HU

Numerous engineering problems involve �ow with moving boundaries. The movement of
solid boundaries may be externally imposed (for example, a piston in a reciprocating engine)
or it may be a dynamic response to �uid forcing (e.g. vortex-induced vibrations of bridge
decks and oil risers). A moving free surface—usually an air–water interface—is encountered
in many areas of hydraulic engineering; examples include waves and tidal �ows, where the
�uctuating loads on coastal and o�shore structures are of considerable importance. Even where
a free surface is stationary its shape is often not easily determined (for example, �ow over
weirs and submerged structures). In these cases a standard technique is to employ a time-
marching procedure to step towards steady state.
The vast range of physical problems involving free-surface �ows has generated a variety

of CFD approaches for speci�c applications. Potential-�ow/boundary-element methods [1] are
used for wave dynamics and water-entry problems. The shallow-water equations, incorporating
depth-averaging and a hydrostatic-pressure approximation, are frequently used in tidal �ows
and to simulate non-breaking wave propagation and run-up [2]. These methods are powerful
tools in their own areas: however, the approximations embodied in the governing �ow equa-
tions make them unsuitable for general-purpose �ow solvers. The neglect of viscous and tur-
bulent transport eliminates a whole range of �ow phenomena associated with boundary-layer
separation and recirculating �ow and the transport and deposition of sediment. The hydrostatic
approximation is untenable when vertical accelerations are comparable with that of gravity;
an important example is wave impact on structures. For codes aspiring to be general-purpose
�ow solvers a free-surface capability must be imbedded within a solution procedure for the
full Navier–Stokes—or, at least, the Reynolds-averaged Navier–Stokes (RANS)—equations.
This is the objective of the present work.
CFD approaches for moving boundaries tend to fall into two categories: �xed-mesh and

moving-mesh. In �xed-mesh methods the �uid-containing fraction of each cell must be
speci�ed or computed. In the context of free-surface �ows, popular techniques include the
volume-of-�uid (VOF) method [3] where an equation is solved for the void fraction, and
the marker-and-cell (MAC) method [4] where the free surface is tracked by following the
motion of particles on the interface. The VOF method has been touted as the only method of
simulating breaking waves. This is not true. The problem of handling breaking waves with a
moving mesh is one of �nding a suitable algorithm for the movement and removal or addi-
tion of cells around the multiply-connected region and the calculations of Reference [5] go
some way to showing that this is feasible. By contrast, the VOF method must resolve a sharp
interface (between void fractions 0 and 1) and for free surfaces which are rapidly varying in
time or space this requires an extremely �ne mesh.
The second practice—which is that adopted by the present work—is that of dynamically

adapting the mesh in such a way that it is always surface-conforming, i.e. mesh cells always
contain �uid (in contrast to VOF) whilst impermeable solid walls and free surfaces coincide
with cell faces. The practice complements the �nite-volume approach because of the latter’s
natural relationship with the fundamental integral forms of the governing conservation equa-
tions. Finite-volume, moving-mesh methods and their application to free-surface �ow have
been described by, for example, [5–8].
The numerical problem can be divided into two parts: the extension of the time-

dependent �nite-volume technique to include a moving mesh, and the motion of the free sur-
face (which governs the evolution of the mesh). The relationship between the �nite-volume
method and the integral conservation laws of �uid mechanics makes the �rst of these natural

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:465–491



CFD SIMULATION OF 2D AND 3D FREE-SURFACE FLOW 467

and straightforward. The second is more problematic, especially in three dimensions. Numer-
ical methods are described in Section 2.
A number of applications are described in Section 3. These are: (1) a simple mechani-

cal pump, which tests the moving-mesh capabilities without the complication of free-surface
movement; (2) oscillation of small-amplitude waves in a tank, for which linear wave theory
is a good approximation; (3) quasi-1-d channel �ow over a ramp, which has a (steady-state)
theoretical solution; (4) passage of a 2-d solitary wave over a submerged obstacle; (5) 3-d
shear �ow about a surface-penetrating cylinder. Despite the fact that the free-surface move-
ment in the last of these was comparatively small (and has been almost universally neglected
in other computations of �ow about a cylinder), this proved exceptionally challenging and was
the only test case which distinguished the relative viability of the various free-surface-moving
algorithms which we tried. In addition, (5) is representative of the high-Reynolds-number
problems that are the norm in hydraulics and for which turbulence modelling is an important
issue. A summary of our �ndings and an outline of areas for future research is given in
Section 4.

2. NUMERICAL METHODS

2.1. Starting point

Our objective was to implement moving-mesh and free-surface capabilities within a general-
purpose university research code called STREAM. The code is a 2- or 3-d �nite-volume solver
which uses the SIMPLE pressure-correction algorithm to solve the Reynolds-averaged Navier–
Stokes (RANS) equations on multi-block structured curvilinear meshes. The basic numerical
procedures have been described by Reference [9] and the multi-block meshing technique
(which involves forming a 2-cell overlap with adjacent structured blocks) in Reference [10].
The code continues to undergo considerable development, and it has been used extensively
for the testing of advanced turbulence models in aerodynamics [11].
The control-volume geometry is de�ned by specifying the vertices of hexahedral cells.

Storage of �ow variables is collocated and cell-centred. For the mass �uxes cell-face velocities
are determined by the standard Rhie-Chow interpolation technique to eliminate the ‘odd-even’
decoupling of pressure values resulting from centred di�erencing of pressure gradients on
a collocated grid. Advective �uxes may be prescribed by a number of second- and third-
order upwind-biased schemes. An iterative solution of the Navier–Stokes equations is achieved
by the SIMPLE pressure-correction technique. Here, the relationship between small pressure
and velocity changes (a relationship determined by the momentum equations) enables the
rephrasing of the continuity equation for each cell as a pressure-correction equation, the
solution of which is used to increment pressure and velocity �elds in such a way as to satisfy
simultaneously both mass and momentum equations. A large number of turbulence closures
are available [11], ranging from linear and non-linear eddy-viscosity models to full second-
moment closure. Each category includes high- and low-Re variants to compute wall-bounded
�ows using either wall functions or a direct integration through the semi-viscous sublayer.
In the subsections below, Section 2.2 describes the extension of the �nite-volume method

to include moving meshes, Section 2.3 describes the time-stepping procedures and Section 2.4
deals with the free-surface movement algorithm.
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Figure 1. Notation for a general control volume and face.

2.2. Moving meshes

The �nite-volume method is based on the discretization of the integral conservation equations
of �uid mechanics. From a programming perspective there are but two canonical equations:
mass conservation (continuity equation):

d
dt

∫
V
� dV +

∫
@V
�(U −Ug) · dA=0 (1)

generic scalar transport equation:

d
dt

∫
V
�� dV +

∫
@V
[�(U −Ug)�− �∇�] · dA=

∫
@V
T · dA+

∫
V
S dV (2)

where V is an arbitrary control volume with surface @V . � is the amount per unit mass of any
conserved quantity, including the individual components of momentum �=Ui, but also any
turbulent scalars such as k and �. �; T and S are generalized di�usivity, non-di�usive �ux and
source density, respectively, and are di�erent for each transported quantity. The whole of the
RHS is usually collectively referred to as ‘the source term’; in general, it may contain both
surface contributions (which should be treated conservatively) and volume-integrated parts.
The main advantage of the integral formulation in the present context is that it does not

matter whether the control volumes are stationary or moving, the only concession to mesh
movement being the presence of the grid velocity Ug in the advection term.

∫
@V [�(U −

Ug)� · dA is the net rate at which the quantity represented by � is advected across a moving
surface.
In semi-discrete form (2) becomes

d
dt
(�V�P) +

∑
f
{ṁf�f −Df(�F − �P)}=source (3)

where the summation is over the faces of a control volume (Figure 1). Here, subscript P
denotes the node at the centre of the control volume and F the node on the opposite side
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Figure 2. Illustrating the need to satisfy the space-conservation law: (a) Ug based on centroid velocity;
(b)

∫
Ug · dA determined from the rate at which a cell face sweeps out volume.

of the general face f. ṁf and Df are net mass �uxes and di�usive transport coe�cients,
respectively, and ‘source’ is a repository for the discretised RHS of (2) plus contributions
transferred from the ‘non-diagonal’ di�usion terms and departures of the advective �uxes from
�rst-order upwind di�erencing (‘deferred corrections’). The net mass �ux ṁf is

ṁf=Cf − �Qf (4)

being the di�erence between the mass �ow rate across the instantaneous cell face,

Cf=
∫
facef

�U · dA

and the rate at which mass is swept out by the moving cell face:

�Qf=
∫
facef

�Ug · dA

If (�ṁf)�P is subtracted from both sides of (3) we obtain a standard linearised form:

d
dt
(�V�) + aP�P −�aF�F = bP − (�ṁf)�P (5)

where the summation is over adjacent nodes or cell faces. For incompressible �ows on
stationary meshes the net mass �ux out of the control volume (�ṁf) is zero in the �nal
converged solution and this ‘divergence’ term may be ignored. In compressible �ows or on
moving meshes this part is equal to −d(�V )=dt and it partially o�sets the time derivative.
The rate at which mass is swept out by a cell face, �Qf, is determined by the grid velocity

Ug. If this is simply based on the velocity of the face centroid (say) then mass errors may
arise if the cell is distorted in more than one direction—see Figure 2 and Reference [12].
Instead, we note that Ug only appears in a product of velocity and area, and

∫
Ug · dA is

simply the rate at which volume is swept out by that cell face. Given the co-ordinates of
the face vertices at the start and end of each timestep, this hexahedral volume is in practice
determined by the same subroutine as that called to evaluate the volume of each cell.
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With this de�nition of Ug, the ‘space-conservation law’

d
dt

∫
V
dV −

∫
@V
Ug · dA=0 (6)

is automatically satis�ed, and (assuming � is constant) (1) reduces to∫
@V
�U · dA=0 (7)

Thus, in incompressible �ow, the pressure-correction equation is required—as for stationary
grids—to enforce zero divergence on the instantaneous mesh at any time level: it is not
necessary to solve a time-dependent mass equation.

2.3. Time-marching

We have coded three time-marching schemes: backward-di�erencing, Crank–Nicolson and
Gear’s scheme. The �rst of these is �rst-order accurate in time; the last two are second-
order accurate. In our applications we have found that second-order time accuracy is vital for
computing genuinely time-dependent problems in a moderate number of timesteps. This is true
both for the scalar-transport equation (covered in this section) and the free-surface movement
algorithm (Section 2.4). In the context of the �nite-volume method, the schemes di�er in the
approximation for the time derivative and the time level (denoted by a superscript) at which
the �ux and source terms are evaluated.

2.3.1. Backward di�erencing (‘�rst-order implicit’). According to this scheme, the �ux and
source terms in (5) are evaluated at the ‘new’ time level:

(�V�P)new − (�V�P)old
�t

=[bP − aP�P +�aF�F − (�ṁf)�P]new (8)

Since the divergence term can be recovered from the continuity equation (compressible or
incompressible) as

(�V )new − (�V )old
�t

=−�ṁf (9)

these can be rearranged (dropping the ‘new’ label for convenience) as

[
(�V )old

�t
+ aP

]
�P −�aF�F = bP + (�V�P)

old

�t
(10)

Thus, time-marching is easily incorporated via a minor modi�cation to diagonal (aP) and
source (bP) coe�cients. Note that to eliminate the divergence (�ṁf) term the mass of �uid
in the cell, �V , must, in contrast to the �uxes, be evaluated at the old time level.
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2.3.2. Crank–Nicolson (‘centred-time/centred-space’). Here, the �ux and source terms in (5)
are the averages of those at the ‘old’ and ‘new’ time levels:

(�V�P)new − (�V�P)old
�t

+
∑
f
[( �Cf − �Qf) ��f −Df(�F − �P)]= �bP (11)

where an overbar here denotes and average of ‘old’ and ‘new’ values; i.e. ��= 1
2(�

new +�old).
For a truly time-centred arrangement the advection term requires a very careful treatment, as
follows.

(i) The mass �ux through an instantaneous cell face, Cf, can be averaged over values at
the start and end of the time step. The contribution Qf, however, represents mass swept
out over the course of the time step and is not averaged.

(ii) For upwind-biased advection schemes the weighting of ��f on the adjacent nodal values
is not known until the sign of ṁf= �Cf − �Qf has been established. Thus, it is not
possible to include advection in the aoldP and aoldF coe�cients, as is commonly done on
�xed meshes.

(iii) It is convenient, as before, to simplify the time-dependent and advection terms by sub-
tracting ��P times the discretised continuity equation (9) from Equation (11), which then
becomes, after rearrangement:

�V
�t
(�newP − �oldP ) +

∑
f
[ �̇mf( ��f − ��P)−Df(�F − �P)]= �bP (12)

where �V = 1
2[(�V )

old + (�V )new]. For this time-marching method the mass of �uid in
the cell, �V , appears, unsurprisingly, as the average of values at ‘old’ and ‘new’ times.

If ��f is written, as is common, as the sum of the value at the ‘upwind’ node, ��U, plus a
deferred correction ��f − ��U, then (12) can be rearranged in canonical form as

[
aP + 2

�V
�t

]
�P −�aF�F = bP + 2 �V�t �

old
P +

[
bP +

∑
f
Df(�F − �P)

]old

−∑
f

�̇mf(�oldU − �oldP )− 2
∑
f

�̇mf( ��f − ��U) (13)

where

aF =Df +max(− �̇mf; 0)
aP =

∑
aF + source − term contributions

Again, for convenience, we have dropped the ‘new’ superscripts. As before, the time-stepping
scheme is implemented by modifying matrix coe�cients and the whole of the RHS is treated
explicitly as a source term. Note, however, the complex form of the advection terms, which
involve a combination of time-averaged and ‘old’ time-level quantities. In principle (if,
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apparently, not always in practice) a timestep restriction is implied by the need to keep
the net coe�cient of �oldP positive.
In our own implementation the computational penalty is the necessity to store certain quan-

tities at the ‘old’ time level: instantaneous mass �uxes Coldf , plus, for each variable, arrays
for �oldP and [bP +

∑
f Df(�F − �P)]old. These last are actually assigned at the start of each

timestep so, whilst they require core memory, they do not need to be committed to �lestore
to enable a restart.

2.3.3. Gear’s method [13]. This uses a second-order �nite-di�erence approximation for the
time derivative at time (n):

d
dt
(�V�P)→

3
2 (�V�P)

(n) − 2(�V�P)(n−1) + 1
2 (�V�P)

(n−2)

�t
(14)

All �ux and source terms are evaluated at the ‘new’ time level (n). The method is fully implicit
and stable. It requires storage of all transported variables at two previous time levels. The
core memory requirements are similar to those of the Crank–Nicolson scheme, but additional
�lestore may be needed since all �eld variables at one previous time level must be stored to
disk if a restart is required. The �rst timestep must obviously be undertaken with a di�erent
method.

2.4. Free-surface movement

2.4.1. Overview. For boundary-conforming meshes, the motion of the free surface governs
the evolution of the grid. For our own particular applications it is su�cient that the blocks
of cells abutting the free surface are simply stretched or compressed in the vertical, with
the vertices which de�ne them moving up and down in proportion to their relative position
between �xed and free surfaces. However, the surface-moving algorithms that we describe
are applicable to more general mesh evolution, provided that suitable re-meshing facilities are
available.
Note �rst of all that the free surface emerges as part of the solution and that its movement is

only part of a grand iterative cycle. Within each timestep there are several free-surface updates
(accompanied by corresponding mesh adjustments) and for each mesh there are several cycles
of the SIMPLE algorithm to update pressure and velocity �elds. As the geometry changes
continually it is ine�cient to solve all equations to a high accuracy on each intermediate mesh
and it is our practice to perform a modest number of SIMPLE cycles (up to a maximum
number or a suitable reduction in equation residuals) for each adjustment of the free surface.
Only when mass, momentum and free-surface kinematic equations are simultaneously satis�ed
does the solution proceed to the next timestep.
The boundary conditions which must be applied at the free surface are:
kinematic condition—no net �ow through the free surface;
dynamic boundary condition—stress is continuous across the interface.

2.4.2. The kinematic boundary condition. It is the kinematic condition that is directly related
to the shape and movement of the free surface. There are two distinct ways of enforcing it
numerically.
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Strategy I: maintain zero net mass �ux. Move the free-surface (by moving either cell
vertices or face-centre control points—see below) in such a way as to maintain zero net mass
�ux through all cell faces on the free surface. This is the strategy adopted by, for example,
References [7, 8]: it is very much in tune with the �nite-volume methodology.
The free-surface movement is performed incrementally within each timestep, the volume

swept out at each adjustment being intended to eliminate the current net mass �ux for each
free-surface cell face. Assuming, for simplicity, vertical motion of cell vertices or control
points, the adjustment for each free-surface cell face is of the form

��h=
ṁs�t
�Ah

(15)

where ��h is the average height increment over the cell face, ṁs is the current net mass �ux
through the surface control-volume face (which we are aiming to make zero) and Ah is the
projected area normal to the direction of movement.
��h is determined by the change in height of the surface vertices surrounding the control-

volume face and direct implementation of the set of equations (15) would lead to a set of
simultaneous equations for the vertex heights. In two dimensions each surface vertex is, at
most, related to the vertex on either side and the resulting tri-diagonal set is easily solved.
In three dimensions, however, since each surface cell face is surrounded by 4 vertices the
solution of the equations resulting from (15) requires considerable algebraic e�ort and, as in
Reference [7], it is more e�cient to adopt (15) as a local approximation for each control
point and treat it as an iterative method to achieve zero net mass �ux.
Strategy II: �nite-di�erence solution of a di�erential equation. Integrate numerically the

�rst-order di�erential equation de�ning the free surface as a material interface (D(z − h)=
Dt=0). For example, if the height h is a function of x and y,

@h
@t
=(W −U · ∇h)s (16)

Multiplying by Ah, (16) becomes, in discrete form

Ah
�h
�t

= (U ·A)s (17)

where A is the face area vector. Note that we make a distinction between �h, which is a
small incremental adjustment within a timestep, and �h which is the total change in height
over a timestep (though it will be continually readjusted during the course of a timestep as
the RHS of (17) changes). Once again we apply this as a local iterative update, rather than
solving simultaneous equations for all h values.
Strategies I and II are equivalent in the limit as the grid size goes to zero.
As in the case of the scalar-transport equation, various time-marching schemes may be

employed to solve (17). Indeed, our experience from the applications we tried (notably the
wave-tank calculation—see Section 3.2), is that for time-accurate solution of motions driven
by free-surface variations it is vital that a second-order scheme be used for the free-surface
movement as well as the transport equations. Thus, for example, with the Crank–Nicolson
scheme the RHS of Equation (15) or (17) must be taken as the average of ‘old’ and ‘new’
time levels.
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Figure 3. Use of control points to de�ne the free surface.

In addition, we may choose to move either the cell vertices themselves or control points
at the cell centres [7]—see Figure 3. In the �rst case, the RHS of (15) or (17) is evaluated
by averaging over cell faces sharing the vertex being moved. In the latter case, (15) or (17)
can be evaluated directly: the control points are moved and cell vertices then computed by
averaging over the control points of faces meeting at that vertex. In two dimensions this
would amount to simple linear interpolation. Experience with our more complex test cases
indicates that de�ning the free surface through intermediate control points yields a more stable
algorithm and smoother free surface.
In the last of the applications to be described in Section 3—the surface-penetrating cylinder—

the free-surface movement proved especially taxing, despite the variation in surface eleva-
tion being comparatively small. This application led us to develop a local under-relaxation
technique—outlined below—to stabilise the algorithm.

2.4.3. An under-relaxation technique to stabilise the local free-surface algorithm. Where
the free surface is changing rapidly the change in height at each iteration may require under-
relaxation. This can be achieved by reducing the change at each iteration by a factor �;
i.e.
Strategy I (mass �ux condition):

��h= �
(
ṁf�t
�Ah

)
(18)

or
Strategy II ( �nite-di�erence method):

h(n) = h∗ + �
(
h(n−1) + �t

(U ·A)s
Ah

− h∗
)

(19)

In (19), h(n−1) is the height of the moved point at the previous time level and h∗ is the most
recent estimate of h(n).
In some applications—notably the start-up motion in the case of the surface-penetrating

cylinder—even this under-relaxation proved insu�cient to save the free-surface algorithm. One
reason for this is that the free-surface algorithms making a local update address the change
in height of the free surface, but not its change in slope. This may be seen most clearly in
Equation (16): the RHS is essentially maintained constant in evaluating the height change,
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but it actually contains ∇h. (In the �nite-volume forms (17) or (15) this is built—rather less
obviously—into the orientation of the surface area vector A.) If part of the slope-dependent
term can be treated implicitly then some stabilisation of the algorithm should result.
The method is best described �rst in two dimensions, where it is similar to a very standard

implicit treatment of the 1-d wave equation. The kinematic equation for h is

@h
@t
=W −U @h

@x

If h(n−1) is the height at the end of the previous timestep and h∗ the most recent estimate of
h(n), then this discretizes as

h(n) − h(n−1)
�t

=W −U @h∗

@x︸︷︷︸
current
slope

−U @
@x
(h(n) − h∗)︸ ︷︷ ︸
adjusted
slope

(20)

The last term on the RHS is the (implicit) change in slope that will result from free-surface
adjustment. If we assume that—(a) this term can be upwind-di�erenced; (b) the most severe
case of slope adjustment occurs when only this point on the surface moves—then we can
make the approximation

−U @
@x
(h(n) − h∗) ≈ −|U |

�x
(h(n) − h∗) (21)

The accuracy of this approximation is not important as this term will vanish in the converged
solution. Transferring this term to the LHS of (20) gives, after some rearrangement,

h(n) = h∗ +
h(n−1) + (W −U (@h∗=@x))− h∗

1 + c
(22)

where

c=
|U |�t
�x

is the Courant number. Comparison with (19) shows that the change is equivalent to an
under-relaxed height change with

�→ 1
1 + c

The changes necessary for three dimensions di�er only in detail. Equation (17) becomes

h(n) − h(n−1) = �t
Ah
[U ·A∗ +U · �A]

where, again, a superscript * denotes the most recent iteration and the last term on the RHS
arises from any change in orientation of the free surface. In �nite-di�erence form,

U · �A
Ah

→ −U · ∇(h− h∗)→ −U ·A�
V

@
@�
(h− h∗)− U ·A�

V
@
@�
(h− h∗)
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where � and � are the curvilinear co-ordinates indexing control volumes in directions within
the free surface, A� and A� are the area vectors of the corresponding near-surface control-
volume faces and V is the cell volume. Making the same upwind-di�erenced approximation
as above leads once again to an under-relaxed update of the form

h(n) = h∗ +
h(n−1) + (�tU ·A=Ah)− h∗

1 + c
(23)

where the Courant number is

c=�t
( |U ·A�|

V
+

|U ·A�|
V

)
(24)

The last reduces on a cartesian grid to the more recognisable form

c=
|u|�t
�x

+
|v|�t
�y

The same local under-relaxation formulae may be applied if one decides to pursue Strategy I
(maintain zero net mass �ux) instead.

2.4.4. The dynamic boundary condition. The dynamic boundary condition insists that the
stress tensor be continuous at the interface. Neglecting surface tension and viscous e�ects,
this is usually taken as the gauge pressure vanishing at the surface:

P=0 on z= h(x; y) (25)

However, there are several numerical niceties to observe.

(i) For turbulent �ow, where the surface boundary layer is not resolved (so that, for turbulent
kinetic energy k for example, we apply @k=@n=0 at the boundary, rather than the strict
condition k→ 0), the dynamic boundary condition is

P + �u2n=0 on z= h(x; y) (26)

where �u2n is the turbulent momentum �ux in a direction normal to the surface.
(ii) Rather than introducing an additional source term in the W -momentum equation it is

better to solve for the piezometric pressure P∗=P+�gz. The dynamic boundary condition
for P∗ is

P∗ + �u2n=�gh on z= h(x; y) (27)

(iii) Where the free surface is de�ned by intermediate control points the dynamic boundary
condition on the piezometric pressure should be applied at the control points and not
the centroids of free-surface cell faces. This helps to eliminate unnatural free-surface
undulations numerically in the same way as it would physically—a hydrostatic pressure
distribution providing forces to redistribute �uid and restore a smooth interface.
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Figure 4. Mechanical pump: (a) 4-block geometry; (b) computational mesh.

3. APPLICATIONS

3.1. Simple model of a pump

This application was studied as a test of the moving-mesh algorithm in the absence of free-
surface e�ects and, whilst the geometry is rather simplistic, the possibilities for more complex
designs are clear, given suitable meshing capabilities.
Fluid is pumped by the action of a piston, as shown in Figure 4. Non-return valves are

simulated, allowing �uid to enter from the left during the suction part of the cycle (at a �ow
rate exactly compensating the rate at which volume is swept out by the piston), whilst in the
second half of the cycle the inlet is closed and �uid is expelled at the right.
A 4-block structured grid is used, as illustrated in the �gure. Only the cells in block 1 are

allowed to change dynamically, with uniform vertical compression or expansion in relation to
the movement of the piston. Non-dimensional variables are used, such that the height of the
inlet/outlet channel is unity (and the width of the piston chamber is 3). The height H of the
piston base at time t is described by

H =2:5 + A sin(2�t=T ); A=1; T =64

The Reynolds number corresponding to this non-dimensionalisation is 105 and a turbulent �ow
is simulated using a standard high-Re k–� turbulence closure [14] with no-slip wall boundary
conditions being implemented via wall functions. Note that velocities on the walls must be the
same as those of the walls themselves, being non-zero on the piston. This presents a problem
analogous to that for free-surface (or, for that matter, the much-computed ‘lid-driven-cavity’
problem): namely, that there is a discontinuity in velocity at the junction of two moving
surfaces.
Figure 5 shows a complete cycle of the pump in terms of the instantaneous streamlines

and velocity vectors after start-up transients have disappeared (about 5 cycles, as
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Figure 5. Simulated �ow in a pump: (a) streamlines; (b) velocity vectors.

determined by velocity variations at a reference position below the piston chamber). The
dominant feature is the large vortex formed initially from the separating �ow as �ow is
drawn into the pump. This extensive feature moves across the piston chamber, being �-
nally expunged during the last part of the cycle. Two smaller vortices are shed from the
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Figure 6. Small-amplitude waves in a tank—height of �uid at one side as a function of time.

corners of the piston chamber as the piston descends, but these are rapidly removed as suction
recommences.

3.2. Small-amplitude waves in a tank

This is a common test case for the development of free-surface codes since inviscid theory
gives exact solutions for �uid motions and surface pro�les in the limit as the wave amplitude
tends to zero. For harmonic motions proportional to ei(k x−wt) in water of undisturbed depth d,
linearized theory gives for the dispersion (frequency vs wave number) relation

!2 = gk tanh kd

where the wavelength is 	=2�=k and the period is T =2�=!. Standing-wave motion in a
tank of length L can be obtained from the superposition of two such waves, the surface
displacement being of the form A cos(kx−!t), provided that L is an integral number of half
wavelengths. We considered only the longest of such waves, initiating the motion from a �uid
at rest with surface pro�le ys =d+A cos(�x=L), where A=0:01d. The wave period predicted
by theory then gives

T
√
g
L
=2

√
�

tanh(�d=L)

or a value of 3.55 for the particular case where d=L.
For the computations, numerical experiments con�rmed that a uniform grid of 40× 40

control volumes gave satisfactory spatial resolution, but the calculations proved very sensitive
to the time-marching scheme for the free surface. Figure 6 shows the height of water at the
left hand side of the tank over a number of oscillations using �t=T =0:01 (i.e. 100 time
steps per period) whilst Figure 7 shows the typical near-surface �ow. Although the wave
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Figure 7. Small-amplitude waves in a tank—near-surface �ow.

h0
u0

zb

h

Figure 8. Flow over a ramp—geometry de�nition.

period was entirely in line with theoretical predictions, wave attenuation (which should not
occur since the case is inviscid) was considerable with the �rst-order time-stepping scheme.
Applying a second-order time-stepping scheme to the scalar-transport equation alone improved
matters slightly (Gear’s method and the Crank–Nicolson scheme gave almost indistinguishable
results), but only when the second-order scheme was applied to the free-surface movement
also was wave attenuation eliminated. Indeed, a calculation of total kinetic+potential energy
con�rmed that negligible energy was lost over 10 oscillations in the last case. We conclude
that for �ows driven by free-surface height variations a second-order time-marching scheme
for both scalar-transport equations and free-surface motion is vital if the �ow is to be simulated
numerically with a modest value of the timestep.
Both strategies for updating the free-surface height—enforcing zero net mass �ux or solving

the kinematic equation—gave indistinguishable results for this test case.

3.3. Quasi 1-d �ow over a ramp

A second inviscid test case for which theory provides useful comparisons is quasi-1d �ow over
a bump. For the simple ramp shown in Figure 8 the �ow is uniform at distances su�ciently far
from the height transition and the classical combination of Bernoulli’s theorem and continuity
gives for the downstream height h:

h
h0
+
1
2
Fr2

(
h0
h

)2
= 1 +

1
2
Fr2 − zb

h0
(28)
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Figure 9. Flow over a ramp—streamlines and �nal grids: (a) subcritical
(Fr=0:4); (b) supercritical (Fr=2).

where a subscript 0 denotes upstream �ow conditions,

Fr =
u0√
gh0

(29)

is the upstream Froude number and zb is the local bed height. (28) is easily inverted numer-
ically by the Newton–Raphson method.
We examined both subcritical (Fr=0:4) and supercritical (Fr=2) approach �ows, with

a step height zb = 0:2h0. A mesh of 60× 30 control volumes was found to give a grid-
independent solution. Since the �nal �ow is steady, a simple time-marching procedure may
be used to iterate toward steady state. First-order time-marching, with �t=0:3 h0=u0, was
employed, with a uniform adjustment to the entire surface pro�le at the end of each time
step to maintain the inlet height at h0. A convective boundary condition at out�ow was found
useful in minimising wave re�ection and reducing the time required to achieve steady state.
The �nal solutions for subcritical and supercritical �ow calculations are shown in Figure 9.

The downstream heights in these two cases are 0.7687 and 1.0792 respectively, compared
with values of 0.7689 and 1.0776 from 1-d theory.

3.4. Passage of a solitary wave over a submerged obstacle

Our fourth application example concerns the interaction of a solitary wave with a submerged
blu� body. The application is useful both in con�rming that our numerical method can pass a
nonlinear wave without signi�cant dispersion or loss in amplitude and as a practical problem
for marine structure design. On encountering a submerged obstacle the wave is subjected to
both inviscid e�ects (wave steepening, an increase in amplitude and partial re�ection) and
purely viscous phenomena (large vortices formed by the roll-up of separated shear layers from
the obstacle corners; these vortices may, in practice, be responsible for signi�cant scour). Such
a test case has been computed elsewhere by �nite di�erences; notably by Reference [15] using
a streamfunction-vorticity formulation on a surface-conforming mesh and by Reference [16]
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Figure 10. Interaction of a solitary wave with a submerged obstacle—geometry de�nition.

using a primitive-variable formulation on a Cartesian mesh, with free-surface tracking using
a modi�ed MAC scheme. In the former, dye-streak photographs from a laboratory �ume are
also available, revealing the formation and development of vortices in the lee of the obstacle.
The geometry of a solitary wave passing over a submerged rectangular obstacle of height H

and length L is shown in Figure 10. d is the still water depth. The inviscid equations of motion
admit �nite-amplitude solitary waves (‘solitons’) of amplitude A, with surface elevation � and
longitudinal velocity given by

�= A sech2(kx −!t)

U =
c�
d+ �

Here, the wave number k=
√
3A=4d3 and phase speed c ≡ !=k=

√
g(d+ A). In our com-

putations these pro�les were applied at the inlet. Quantities are non-dimensionalized by the
undisturbed water depth d, velocity scale u0 =

√
gd (the phase speed of long waves of van-

ishing amplitude) and the density of the �uid. In practice, viscosity will gradually attenuate
the solitary wave. The Reynolds number is de�ned as Re= u0d=
. All calculations assume
laminar �ow.
Computations were performed on a 5-block grid, illustrated in Figure 11, where only the

upper 3 blocks were allowed to deform in response to the motion of the free surface. The mesh
was re�ned near the surface of the obstacle, with minimum cell dimensions �x=d=0:008 and
�y=d=8× 10−5 and some lesser re�nement �y=d=0:002 near the free surface. The total
number of cells varied between cases but was about 24000. A non-dimensional timestep
of 0.01 was used throughout, although subsequent tests showed that, provided a second-
order scheme was used for the free-surface update, a much larger value could have been
used without introducing non-physical wave attenuation. The free-surface movement scheme
adopted strategy I: seek to enforce zero net mass �ux. If the alternative strategy of solving the
kinematic equation was pursued a very small time step was necessary to prevent undershoot
leading to a signi�cant wave train behind the solitary wave.
Two cases were examined, corresponding to the experimental observations of Reference

[15] and the computations of Reference [16], respectively.

Case (a): (‘Short obstacle’): wave amplitude A=d=0:4; obstacle dimensions H=d=0:5;
L=d=2; Reynolds number 82 000.
Case (b): (‘Long obstacle’): wave amplitude A=d=0:15; obstacle dimensions H=d=0:5;

L=d=20; Reynolds number 210 000.
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Figure 11. Interaction of a solitary wave with a submerged obstacle—computational mesh: (a) multi-
block structure; (b) deformation under the wave.

The general behaviour of a solitary wave encountering each obstacle is illustrated in
Figure 12. In Case (a) the obstacle is short compared with the wavelength 	 (taken as 2�=k,
which corresponds roughly to the distance between points with elevation 1=100 of the maxi-
mum): when A=d=0:4; 	=d ≈ 11. There is some wave re�ection from the front face of the
obstacle, but the wave passes largely unchanged. In Case (b) the wavelength is more closely
matched to the length of the obstacle (	=d ≈ 19) and there is greater interaction. Wave re�ec-
tion occurs from the upstream end of the obstacle with a smaller re�ection (downward-going
wave) from the downstream end. The wave steepens asymmetrically as its elevation increases
over the obstacle. The distortion is such that two peaks of di�ering amplitude, and hence
di�erent phase speed, emerge and propagate downstream as distinct solitons. This con�rms
the �ndings of [16].
The vortical �ow patterns around the obstacle in Case (a) are illustrated in Figure 13.

The streaklines (Figure 13a) are directly comparable with the dye-streak photographs of
Tang and Chang and reveal a lee vortex of size and location in good agreement with that
visualisation. The instantaneous streamlines (Figure 13b) reveal a complex pattern of vor-
tices. Secondary vortices at the base of a marine structure can give rise to considerable
scour.
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Figure 12. Passage of a solitary wave over a submerged rectangular obstacle—surface
pro�le: (a) short obstacle; (b) long obstacle.

3.5. 3-d �ow about a surface-penetrating cylinder

Whilst much computational e�ort has been expended on 2-d calculations of �ow about a
cylinder, focusing on the �uctuating drag and lift forces in �ow about a body of e�ectively
in�nite length, the case of shear �ow about a surface-penetrating cylinder has received com-
paratively little attention from the CFD community, despite its obvious practical application
to structures such as bridge piers. Where it has been computed, the focus has tended to be
on the scouring action of the horseshoe vortex that forms at the junction with the channel
bed; the free surface has generally been treated by the rigid lid approximation (e.g. Ref-
erence [17]). More recently, LES calculations by Reference [18] investigated the e�ect of
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Figure 13. Passage of a solitary wave over a submerged rectangular obstacle—�ow pattern:
(a) streaklines; (b) instantaneous streamlines.
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Figure 14. Overview of �ow about a surface-penetrating cylinder.

free-surface motions on �ow about a surface-penetrating cylinder, concluding that wave mo-
tions attenuate the periodic vortex shedding near the free surface to a depth of order one di-
ameter for large (but subcritical) Froude numbers. However, their simulations used a uniform
approach �ow with symmetry condition on the lower boundary, so eliminating any junction
vortex. The combination of three e�ects—a turbulent shear �ow (giving rise to a horse-
shoe vortex), vortex shedding and free-surface motion—represents a challenge to numerical
modellers.
We considered the turbulent shear �ow past a surface-penetrating cylinder at a Reynolds

number (based on bulk velocity Ub and cylinder diameter D) of 39 000 and Froude number
(Fr=Ub=

√
gd, where d is the undisturbed �ow depth) of 0.2. At this Froude number the

free-surface motions are small and do not signi�cantly a�ect the vortex-shedding process. A
general overview of the computed �ow �eld is shown in Figure 14.
Calculations were performed on the 12-block grid depicted in Figure 15. The mesh incor-

porated 10 layers of cells in the vertical, giving a total of 44 928 control volumes. Control
volumes were stretched in the vertical according to the motion of the free surface. We make
no claim to grid independence at this mesh density, our objective here being to develop and
test the free-surface movement algorithm. The horseshoe vortex in particular is under-resolved
and future work will examine this structure in greater detail.
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Figure 15. Surface-penetrating cylinder—computational mesh.

Flow variables were initialised at in�ow from a preliminary 1-d fully developed �ow calcu-
lation with the same bulk velocity (allowing a streamwise pressure gradient to drive the �ow,
rather than the small friction slope in the open-channel situation). The free-surface height
was prescribed at the out�ow boundary, with a convection boundary condition for other �ow
variables. Free-slip (‘Euler wall’) boundary conditions were applied at the side boundaries.
Note that this gave a blockage ratio of 1/7, which can have an important impact on vortex
shedding. Wall functions were used to apply non-slip boundary conditions at the channel bed
and cylinder walls (which were both assumed smooth). We considered two high-Re turbu-
lence models here: the ‘standard’ k–� model of Reference [14] that is the mainstay of many
commercial codes and the non-linear k–� model of Reference [19]. The latter was formally
developed as a low-Re closure, but for this test case was deployed without the near-wall
viscous damping terms, since to resolve the semi-viscous sublayer on both channel bed and
cylinder surface would have demanded excessive computational resources. Of these two clo-
sures, only the non-linear model gave rise to vortex shedding and it is these results which
are included here. We discuss reasons for the lack of vortex shedding with the standard k–�
model below.
Experience from calculating 2-d �ows about cylinders suggests that whilst periodic vortex

shedding will ultimately arise as a natural instability of the �ow it can take a considerable
time to develop. It is common practice to employ some initial asymmetry to trigger vortex
shedding, and a convenient method here was to spin the cylinder at a gradually diminishing
rate up to non-dimensional time (tUb=D) of 2.
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Figure 16. Surface-penetrating cylinder—drag and lift coe�cients.

The �ow was started impulsively, which led to some very large initial transients in the
free-surface elevation. Of the various free-surface movement strategies that we tried, the only
one which gave stable and smooth free-surface pro�les was solution of the kinematic equa-
tion (Strategy II), with the free-surface elevation de�ned by control points. The relaxation
technique discussed in 2.4.3 was vital in stabilising the free-surface movement algorithm for
moderate sizes of non-dimensional timestep (here, 0.06 or approximately 1/64th of a period).
A second-order time-marching scheme (Crank–Nicolson) was also necessary to produce sig-
ni�cant vortex shedding with this timestep.
Figure 16 shows the drag and lift coe�cients CD and CL after initial transients have decayed.

These quantities are de�ned by

CD =
drag

1
2 �U

2
bA
; CL =

lift
1
2 �U

2
bA

where ‘drag’ and ‘lift’ are the integrated pressure+viscous forces in the streamwise and
transverse directions and A= hD is the projected area normal to the �ow (in still water).
These have the characteristic features of vortex shedding—the drag force �uctuates at twice
the frequency of the lateral force and with a much smaller amplitude. The coe�cients are
smaller in amplitude (CD≈ 0:74) than experimental data for an e�ectively in�nite cylinder at
this Reynolds number and the Strouhal number (S=fD=Ub) is slightly larger, at about 0.25.
However, such comparisons are di�cult for a number of reasons. In this case the approach
�ow is highly turbulent, incident velocity shear tends to decorrelate motions along the length
of the cylinder, the junction vortex (about 15% of the depth of the channel) greatly reduces
pressure variations near the bed and there is a signi�cant blockage ratio.
Figure 17 shows shaded height contours superimposed on the surface velocity vectors.

Surface elevation at the upstream impingement point is in accordance with that predicted
from Bernoulli’s theorem (U 2=2g). At this Froude number the pressure is nearly hydrostatic
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Figure 17. Surface-penetrating cylinder—surface elevation and �ow �eld.

so that elevation changes tend to re�ect pressure variations: notably the depressions near the
centre of vortices. However, there are signi�cant surface slopes near the separation points in
particular and evidence of a sequence of waves generated from these.
Finally, Figure 18 explains why form drag is reduced and vortex shedding absent when

the standard k–� model is used by plotting the near-surface turbulent kinetic energy for the
standard and non-linear models. With the standard model there is excessive and unphysical
generation of turbulence energy upstream of the cylinder. This additional turbulence in the
boundary layer acts to delay separation signi�cantly. The reason for this excessive generation
of turbulence may be found by noting that the ratio of turbulence production to dissipation is
given, for a linear eddy-viscosity model, by

production
dissipation

= C� �s2

where C� is the main coe�cient in the eddy-viscosity relationship (
t =C�k2=�) and �s2 =
2 (k=�)2SijSij is an invariant of the mean strain tensor Sij =1=2(@Ui=@xj + @Uj=@xi), non-
dimensionalized by the turbulent timescale. If you like, �s re�ects the typical relative magnitude
of mean velocity gradient. If C� is a constant (with a value of 0.09 in the standard model) the
ratio of production to dissipation becomes very high in regions of high velocity gradient—
such as impingement points. On the other hand, in the non-linear model of Reference [19],
C� behaves like 1= �s3=2 for large irrotational strains, so signi�cantly reducing turbulence gen-
eration. In addition, the non-linear stress–strain relation contains cubic terms whose action is
(correctly) to depress turbulence in regions of convex curvature, again favouring �ow sepa-
ration from the sides of the cylinder.
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Figure 18. Surface-penetrating cylinder—near-surface turbulent kinetic energy (k=U 2
b ):

(a) standard k–� model; (b) non-linear k–� model.

4. CONCLUSIONS

The implementation of moving-mesh and free-surface algorithms within a �nite-volume code
has been described and illustrated by a number of two- and three-dimensional, fundamental
and applied test cases. Calculations have been validated against simple theory (quasi 1-d �ow;
linear and non-linear waves), experiments and previous calculations that have used di�erent
numerical methods. Two strategies for enforcing the free-surface kinematic condition have
been successfully implemented: iterating toward a condition of zero net mass �ux or solving
the kinematic equation by a �nite-di�erence method. It is found that de�ning the free surface
by intermediate control points is preferable to moving the mesh vertices directly and that a
local under-relaxation technique seeking to limit the explicit update at each timestep can be
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used to stabilise the free-surface algorithm in more intractable cases. To compute �ows driven
by free-surface height variations (notably waves on still water) with moderate sizes of time
step a second-order time-marching scheme is vital in both scalar-transport and free-surface
equations if unphysical wave attenuation is to be eliminated.
The methods which have been developed, coded and tested o�er considerable potential for

future work. Application to �oating bodies and wave forces on o�shore or coastal structures
are examples of current interest. Computations of the 3-d surface-penetrating cylinder will be
extended to higher Froude numbers and the complex interaction between horseshoe vortex,
wake vortex and surface waves studied in more detail on �ner meshes.
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